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INTRODUCTION

We consider the case of a monochromatic cylindrical beam with Gaussian intensity
profile, which is incident endwise upon a semi-infinite planar waveguide structure. This
study can have practical implications for electro-optic devices where coupling of laser
energy into guided wave devices is of interest.

Shown schematically in Figure 1, the Gaussian beam is incident at angle 6 onto the

z =0 plane where this plane defines the boundary between the superstrate and substrate.
The problem analyzed here is two-dimensional, where the incident beam and waveguide

structure are invariant in the y dimension.

Gapssian : normal
incident
beam 0 __{)
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T—D X
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FIGURE 1. Schematic of a Gaussian Beam Incident Endwise Upon a
Semi-Infinite Planar Waveguide. The Gaussian beam and waveguide
channel are invariant in the y-direction. The shaded substrate regions

with permittivity & border the planar waveguide channel which has

permittivity £,. The substrate regions are semi-infinite in the +x
directions and the waveguide has width d. Also, the substrate and

waveguide are both semi-infinite in the —z direction.
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METHOD OF COMPUTATION

The plane z = 0 separates two semi-infinite media. The superstrate region z 2 0 is

homogeneous and the substrate region, which is invariant in the —z direction, contains a
planar waveguide structure of width d. We assume a monochromatic Gaussian intensity

profile beam, characterized by width o and wavelength A, is normally incident on the
waveguide structure. We approximate the amplitude of the Gaussian beam at z = 0 by

P (x,z = 0) = exp|-x*/ 0 )

where P;”C represents the y component of either the electric or magnetic field, whichever is

appropriate. When the (electric) magnetic field is parallel to the waveguide boundaries, P;"C

is the (electric) magnetic field amplitude. We wish to calculate the transmitted and reflected
fields where we expect at least part of the transmitted energy to be in the form of a guided
wave.

The approach used in this work has similarities to previous work (References 1 through
5). In References 1 through 3, solutions were obtained as modal expansions similar to that
done here. In Reference 1, the solution was obtained entirely in Fourier space and
digitization of real space is not done. In References 2 through 3, real space is discretized as
is done in the present work. In Reference 4 and also in real space, a numerical integration
of Maxwell’s equations is done without the need for modal expansion solutions. Finally,
in Reference 5, the present method was applied to investigate transverse localization of
electromagnetic propagation in alternating high-low dielectric media of random thickness.
Like the work here, the incident beam was Gaussian and incident endwise on the laminate

structure.

Along the x direction, a discrete set of n, points, separated by Ax, is defined that are
symmetrically located about x = 0. This is shown in Figure 2. The total width of these
points is L=rn,Ax and this defines the lateral limits (x = + L/2) of the calculation region

along the x direction. Because of this, we require that L >> & so that the incident field is

essentially zero at the limits x = = L/2. No attempt is made to incorporate transparent
boundary conditions at the lateral limits of the calculation region. The field at the lateral
limit and beyond is always assumed to be zero. If nonzero field intensity reaches the lateral
limit boundary, for whatever reason, then the calculation is terminated. A simple example
is when the substrate region is a homogeneous dielectric material (no waveguide channel).
In this case, the width of the transmitted field, relative to the initial Gaussian width, would
spread out with increasing depth by means of diffraction and eventually reach the lateral
limit boundary. In this case, the field would probably “reflect” from the boundary, and this
would be nonphysical since the boundary is fictitious.
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FIGURE 2. Schematic Illustrating x Coordinate Discretization (Solid Dots

Separated by Ax) With x-Limits on Extent of Calculation Region (Shown by
Length L Between the Vertical Dotted Lines). The incident field is negligible at the
extreme limits. In this example the solid dots represent n,=21 digitized x
coordinates.

Solutions to Maxwell’s equations in the homogeneous z > 0 region are straightforward

and not discussed here. In the inhomogeneous z < O region, the solutions are more
complicated and with the x coordinate digitized, we write the x dependence of the two
Maxwell’s equations VXE(r)=i(@w/c)B(r) and VXxB(r)=-i(w/c)D(r), where

D(r) = &(r)E(r), in centered finite-difference form. In the z <0 region, this yields:

JE (x,2) _io

az TB),(X,Z)
+ iC Z{By(X+Ax,Z)“By(X,Z)+ By(x_Ax5Z)_By(x1Z)} (23)
w(Ax) e(x+Ax/2) e(x—Ax/2)
ETD 10 (2 (2b)
oz c
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oH, (x,z) _ i
T = e, (5,0

+-a)(—i:x;2-{215y (1,2) E, (x + Ax,2)— E,(x - Ax, )} 20)

M = Lals(x)Ex(x,z) (2d)
oz c

where the z coordinate remains a continuous variable. The z components of the fields have
been eliminated since the z < 0 region is invariant along the z direction. The permittivity

¢(x) describes the substrate region where &(x)=¢, when |x|>d/2 and &(x)=¢, when
lx|<d/2. Equation 2 is versatile since the only part that depends on the waveguide
structure is the permittivity £(x), and this quantity can be configured to represent a variety
of situations. Equation 2 is valid at a discrete point x in the set of n, points and since we

must collectively consider all of the x points, this results in a coupled equation system
totaling 4 n, equations. The equations associated with all n, points which cover distance

L =n,Ax may be concisely written in matrix form as

é?é(_X,_zZ =M(X)AX,z2) (3a)
oz
where
E (X,2) i
E (X,2)
AX,2) = By (X.2) (3b)
B (X,z)

Since M(X) is independent of z, the solution for the fields in the z < 0 region is
straightforward by diagonalization of M(X):

A(X.7) = S(X Az)C = Sy S, e 0 \C, 4
(X9=5®epraC=|" "7 L] ¢ @
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The square matrix S(X) has columns which are the eigenvectors of M(X), exp(Az) is a

diagonal matrix with A representing the set of eigenvalues associated with M(X), and C is
a column vector of constants. In the right hand side of this equation, the S and exp
matrices have been sectored. The exp matrix has exponential terms along the diagonal

where the set of eigenvalues A consists of pairs such that for every eigenvalue +A, there is
another eigenvalue which is equal but opposite in sign, i.e. —A. The eigenvalue pairs +A

and —A are associated with solutions that propagate or decay exponentially in the —z and +z
directions, respectively. With this in mind, it is clear in Equation 4 that the exp matrix has
been sectored by separating the solutions, which propagate into the %z directions. For the
problem considered in this work, solutions in the z <0 region having coefficient C_ are
unphysical since they represent propagation in the +z direction or exponentially increasing
behavior as z — —eo. Because of this we set C_=0 and the z <0 solution may now be
written

E'(X,2))_ sn<X>e’“c+J )
B'(X,2)) \S,(X)e*C,

where we have introduced the superscript ¢ to denote transmitted field and the tilde notation
to denote an abbreviated column vector as

_ (E, _ (B,
E:(Ey) and B= B, (6)

From Equation 5 we easily relate the magnetic and electric fields in the z < 0 region as

B'(X,2)=S,,(X)[S,,(X)] " E"(X.2) (7)

We now apply the boundary conditions at the z = 0 boundary with the requirement that
the tangential components of the electric and magnetic fields be continuous across this

boundary. These conditions can be written as E’”‘(X,O)+I~£’(X,O)=E’(X,0) and

ﬁi"c(X,0)+I~3’(X,O) = f}'(X,O), where the superscripts inc, r, and ¢ denote the incident,
reflected, and transmitted field, respectively. Using Equation 7, these continuity conditions
may be written as

(E"”C(X,O)) . (E'(X,O)) _ [E‘(X,O)) _ ( E'(X,0) ©
BX,0)) (B'(X,0)) \B(X.0)) (S:XS, (X[ E'(X,0)
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The incident fields represent the Gaussian incident beam. To solve for the transmitted E'

and reflected E” electric fields, we need a relationship between E” and B’ and since these
latter fields are in the homogeneous superstrate region, we can write these fields as Fourier

expansions
E'(X,2)=FXKE (K,z) and B"(X,2)=FX,K)B"(K,z) 9)

These Fourier expansions are written in matrix form where the square matrix F(X,K) is a
Fourier transform operator. The K denotes the set of wave vectors in Fourier space
analogous to the set of x coordinates X in real space. In Fourier space and with Maxwell’s

equations, we can further relate E"(K,0) and B"(K,0) by

B’ (K,0)=Z(K)E'(K,0) (10)

where Z(K) is a square matrix defined elsewhere (References 1 and 3). Using Equations 9
and 10 in Equation 8 yields

[ I -1 )E’(X,O) _ E"(X,0) (1D
S,Sti -FZF' |\ £7(X,0)) (B™(X,0)

where I is the identity matrix. Equation 11 can be solved for E‘(X,0) and then, from
Equation 5 we find that C, = Sfllfil’ (X,0) that further yields the transmitted electric field for

depths z<0 as -
E'(X,2) =S,,eS/E'(X,0) (12)

This is our primary theoretical result from which we obtain numerical results below.

NUMERICAL RESULTS

The numerical results were obtained with the following physical parameters: w/c = 1.5

inverse micrometers (wavelength = 4.19 micrometers), ¢ = 3.0 micrometers, d = 3.0
micrometers and L = 30 micrometers. The number of digitized points was n, =1001,
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which yields Ax = 0.03 micrometers. The permittivity values are & =(-16,0) and
g, =(2.25,0).

In Figure 3, we illustrate the existence of guided wave modes by looking at the inverse
square of the dispersion relation for both p- and s-polarization. The dispersion relations are
obtained for the z < 0 region by matching boundary conditions and finding the
electromagnetic field solutions within this region. The peaks indicate the wave numbers k,

which satisfy the dispersion relation for the fixed ® and therefore represent wave numbers

associated with guided mode solutions. For frequency w/c = 1.5 inverse micrometers and
d = 3.0 micrometers, we see that there are three p-polarization mode peaks and two
s-polarization mode peaks. These peaks indicate guided-mode solutions, which propagate
in the z direction along the guided wave structure described in this work. Figures 4
through 6 describe coupling of the incident beam into these guided modes.

1x10% £
1x10?2
1x1021
1x1020
1x10'° F
1x10'8 E
1x10"7
1x101®
1x10'S
1x10™ |

1x1013 ot L
05 07 09 11 13 15 17 19

Normalized Wave Number, kZ/(co/c)

Guided Wave Resonance

[P TR R S BN o

FIGURE 3. Guided-Wave Resonance Versus Wave Number k,

at Fixed Frequency ®. This graph indicates three p-pol
(magnetic vector paralle]l to guide boundaries) mode solutions
and two s-pol (electric vector parallel to guide boundaries) mode
solutions.

For p-polarization, Figure 4 shows the intensity of the incident field (at z = 0) and

transmitted field (Equation 12 at z = 0 and z = —500A). It is seen that there is significant
coupling of the incident beam into the planar waveguide where the reflectance and
transmittance is 0.335 and 0.665, respectively.
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In Figure 4, it is seen that there are some interesting observations about the three p-pol
modes shown in Figure 3. First, the mode indicated at &, /(w/c)=0.9 (k, =1.35 inverse
microns) is associated with a guided mode, which has peak intensity around x = O and
minimum intensity at the guide boundaries. This intensity peak is seen as the slight
negative curvature (about x = 0 ) of the two guided-mode curves. Also, this mode is
propagating (non-evanescent) in both the x and z directions. The other two p-pol peaks in
Figure 3 are centered about k,/(w/c)=1.62. This indicates that they are associated with
coupled surface waves that are evanescent relative to the metal-dielectric waveguide
boundaries. Thus, these modes are evanescent in the x direction and propagating in the z
direction. To see this, we note that a surface plasmon that propagates along a metal-

dielectric interface has dispersion relation k,/(w/c)=./€¢,/(€ +¢,) and, for the
permittivity parameters used here, this yields kg, /(@w/c)=1.618. The two p-pol peaks

seen in Figure 3 are split about this value with the splitting due to coupling between the
surface waves at each interface. Finally, we note that since these modes are evanescent,

their intensity is a maximum at the guide interfaces.
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FIGURE 4. Electric Field Intensity Versus x Coordinate For

P-Polarization and a/c = 1.5 Inverse Microns. For reference,
the z = 0 Gaussian beam envelope is indicated (dash line). The
remaining two intensity curves are for the transmitted field (Eq.
(12)) at z = O (thick line) and z = —500A. (thin line). The planar
waveguide boundaries are at x =+ 1.5 micrometers.

For p-polarization, there is another surface mode, not indicated in Figure 3, with which
there is coupling: the surface plasmon at the z = O metal-vacuum interface. This surface
plasma mode is confined to the metal-vacuum interface (evanescent in the z direction) and
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propagates in the x direction. Coupling can occur between the incident and metal-vacuum
surface plasmon field because of the discontinuity of the dielectric waveguide channel.
This surface plasmon, with wave number £k has dispersion relation

sp*
k, (@/c)=./g, (g, +1) = 1.0324 for &, =(~16,0). This surface plasmon coupling is
evident in Fig.5 which shows the Fourier spectrum of the electric field at z = 0 and —500A.
Figure 5 is a plot of the Fourier transform of E’(X,z), which is the Fourier spectrum
E’(kx,z), versus k, /(@w/c). In Figure 5, most Fourier components are concentrated about
k.= 0. However, for the thick curve (z = 0) there are two peaks about &, /(@/c) = +1.1
and we interpret these as wave numbers associated with the surface plasmon. For the dot

curve (z =—500A), we see there are no similar peaks.

(e9]

p-polarization

Electric Field Intensity
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FIGURE 5. Electric Field Intensity Versus Wave Number
k. for w/c = 1.5 Inverse Microns and p-Polarization. The
solid and dot curves are for z = 0 and —~500A, respectively.
The solid curve shows two sharp peaks centered about
I<+tk_ <1.2 which indicate coupling with surface plasmons

which propagate along the x direction. The remaining
Fourier spectrum is associated with propagation of guided
waves in the planar waveguide along the z direction.
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FIGURE 6. Electric Field Intensity Versus x Coordinate for s-
Polarization and ®w/c = 1.5 Inverse Microns. For reference, the
z =0 Gaussian beam envelope is indicated. The remaining two
intensity curves are for the transmitted field (Equation 12) at
z= 0 (thick line) and z = —500A (thin line). The planar
waveguide boundaries are at x = + 1.5 micrometers as shown
by the vertical dash lines.

The result for s-polarization is shown in Figure 6. Again, the Gaussian beam at z = 0
is shown for reference. The vertical dashed lines indicate the boundaries of the waveguide

channel where |x|<1.5 micrometers. The thin and thick curves are the electric field
intensity at z = 0 and z = —500A, respectively. Again, it is seen that there is significant
coupling into the guided wave channel where the reflectance and transmittance are 0.282

and 0.718, respectively. Note that for this polarization, there are no evanescent surface
modes and this solution propagates in both the x and z directions. The electric field

intensity is peaked about x = 0.

CONCLUSIONS

We have described a method of calculating the reflected and transmitted fields
associated with a Gaussian intensity beam incident endwise upon a planar waveguide
structure. The numerical results indicate that a majority of incident energy can be coupled
into the planar structure. The results account for guided modes which propagate down the
planar guide and for surface modes associated with the metal-vacuum interface.

10
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